TechShape.ru

Информационные технологии

Основные разделы

Метод простейшего интервального оценивания для решения линейного моделирования с простым расчетом интервала

Одной из старейших и вечно актуальных задач, которая активно применяется при исследовании различный физических и химических явлений является описание экспериментальных данных, построение модели и предсказание новых значений.

Работа посвящена разработке метода простейшего интервального оценивания для решения линейного моделирования с простым расчетным интервалом, применяемого при решении важных теоритических и практических задач интерпретации результатов многоканальных экспериментов. Подобный подход позволяет обрабатывать сложные наборы экспериментальных данных, пронизанных внутренними связями.

Простейшим интервальным оцениванием (ПИО) понимается метод линейного моделирования и построения интервальных оценок прогноза в многомерной калибровке. ПИО дает результат в удобном интервальном виде, учитывающем все имеющиеся неопределенности: ошибки измерения предикторов и откликов, погрешности билинейного моделирования, и т.п. Кроме того, метод ПИО предоставляет новые возможности для построения содержательной классификации влиятельности объектов.

ПИО метод основывается на идеи Л. Канторовича высказанной в 1962 году, а именно - при анализе данных, заменить минимизацию суммы квадрантов отклонений на систему неравенств, которая решается с помощью методов линейного программирования. В этом случае результат прогноза сразу имеет вид интервала, поэтому этот метод называется простым интервальным оцениванием (ПИО). В свое время эта идея не получила должного признания и развития, что было связано, по-видимому, с недостаточным быстродействием компьютеров. В 80-х-90-х гг., используя эту идею, был выполнен ряд важных прикладных работ, а частности получены интересные результаты по анализу информационной ценности кинетических измерений, а так же работы в области аналитической химии. Кроме того проводились исследования, направленные на построение интервальной оценки параметров моделей (метод центра неопределенностей), что оказалось малоплодотворным. Итоги этих исследований были подведены в монографии, где подробно рассматривается основная задача решаемая авторами. Это - задача интервальной оценки параметров моделей, погружение области возможных значений этих параметров в гиперкуб, параллелепипед, эллипсоид, и т. п.

Такая постановка задачи представляется не плодотворной и малоперспективной, что и было подтверждено практикой - за последние 10 лет новые работы в этом направлении не замечены. В тоже время, идея Канторовича может дать интересные результаты, если рассматривать многомерную калибровку (ММК) как задачу построение интервального прогноза отклика у. В этом случае удается решить две равно важны практические задачи. Во-первых, установить область неопределенности для прогноза искомого отклика, т.е. оценить точность построенной калибровки, индивидуально для каждого объекта. Во - вторых, используя подход ПИО, можно построить систему классификации объектов, т.е. установить индивидуальные особенности каждого объекта, определенные по его взаимоотношениям, как с моделью, так и с другими объектами. Общеизвестными примерами такой классификации являются такие понятия как выброс (объект, резко выделяющийся из общей закономерности) или экспериментальный объект (находящийся в периферийной области модели и оказывающий значительное влияние на ее построение). не смотря на широкое употребление этих понятий в различных исследованиях, не существует их общепризнанных определений и методов обнаружения. Метод ПИО может восполнить этот пробел.

Однако ПИО метод значительно отличается от традиционного, привычного регрессионного похода, применяемого в задачах многомерной калибровки.

Цель работы состоит в разработке теоритических и прикладных аспектов интервального анализа результатов экспериментов. В том числе: построение интервальных моделей линейной калибровки, оценка индивидуальной неопределенности прогноза, создание системы классификации объектов, определение области применения построенных моделей. Также в написании алгоритмов обработки многоканальных сигналов и создании компьютерной системы анализа результатов эксперимента, позволяющей реализовать потенциальные возможности измерительных систем и приборов; в построении методологии совместного применения проекционных методов и ПИО при решении важных теоритических и практических задач интерпретации больших наборов данных многоканальных экспериментов.

    Еще статьи

    Синтез следящей системы
    Следящая система Данные для синтеза системы Закон изменения управляющей величины “q 1”, рад 0.15 Максимальное значение второй производной регулируемой величины, рад/с2 6.2 Время регулирования, с 1.5 ...

    Все права защищены! 2022 - www.techshape.ru