TechShape.ru

Информационные технологии

Основные разделы

Причины появления доменов

Основными взаимодействиями в ферромагнетике являются обменное и магнитодипольное. Важную роль также играет анизотропия ферромагнетиков. Обсудим современную точку зрения на роль указанных здесь факторов различной природы в формировании доменной структуры ферромагнетиков.

При отсутствии доменов, то есть в том случае, когда ферромагнетик намагничен однородно, минимальна сумма Wе + Wа (Wе - обменная энергия, Wа - энергией анизотропии). Конечно же, предполагается, что намагниченность направлена вдоль кристаллографической оси, отвечающей минимуму Wа. Но при этом должна быть максимальна энергия, связанная с возникновением вокруг образца магнитного поля Wm (Wm-энергией магнитодипольного взаимодействия). Эта энергия для однородного намагниченного образца пропорциональна его объему V : . При больших размерах образца Wm может принимать очень большие значения, а это говорит о том, что однородное намагничивание больших образцов является невыгодным.

Рассмотрим теперь другую крайнюю ситуацию, когда распределение намагниченности неоднородно по всему объему образца. В этом случае можно добиться того, чтобы была равна нулю энергия Wm. Расчет показывает, что в таком состоянии обменная энергия пропорциональна V1/3. Казалось бы, здесь ситуация выгоднее, чем в предыдущем случае, где было . Однако при неоднородной намагниченности во всем объеме образца в существенной его части намагниченность отклонена от направлений, где минимальна энергия анизотропии, поэтому в данном случае Wа пропорциональна объему образца. Таким образом, в общем случае и состояние с полностью неоднородной намагниченностью не является выгодным. Отметим, что такое состояние, тем не менее бывает тогда, когда анизотропия ферромагнетика пренебрежимо мала, в частности у сердечников из магнитомягких материалов в трансформаторах.

Итак, видно, что условия минимальности энергий обмена, анизотропии и размагничивающих полей противоречивы. Как было показано в работе Ландау и Лифшица, на практике реализуется некоторая промежуточная между двумя рассмотренными выше ситуация с образованием доменной структуры. При этом в кристалле можно выделить однородно намагниченные домены, направление намагниченности в каждом из которых совпадает с одной из эквивалентных осей легкого намагничивания (это направления в ферромагнетике, в которых энергия анизотропии минимальна, их может быть несколько). Домены разделены доменными границами. Размеры и форма доменов определяются конкуренцией рассмотренных выше взаимодействий в доменах и доменных границах.

Оказывается, что доменная структура ферромагнетика определяется в основном тремя факторами. Во-первых, она определяется геометрией образца, то есть его формой и ориентацией кристаллографических осей относительно поверхности. Во-вторых, энергией магнитной анизотропии, то есть наличием энергетически эквивалентных направлений намагниченности. В-третьих, в реальном образце доменная структура сильно зависит от наличия несовершенств или дефектов кристаллической структуры.

Рассмотрим доменную структуру идеальной (без дефектов) одноосной плоскопараллельной пластинки с поверхностью, перпендикулярной оси анизотропии (ось Z). Будем считать, что пластинка бесконечна вдоль осей X и Y, а ее толщина (размер вдоль оси Z) равна h. При отсутствии внешнего магнитного поля намагниченность, при β < 0 может быть направлена либо вдоль оси Z, либо против нее. Очевидно, что при этом выгодно состояние, в котором будет существовать равное количество доменов с Mz = + M0 и Mz =-M0 , причем они должны чередоваться друг с другом (рис. 1, а). В таком состоянии полная энергия пластинки должна быть минимальна. Эта энергия складывается из энергии размагничивающего поля, которое в основном сосредоточено вблизи поверхности пластинки, и энергии доменных границ.

Рис. 1. Доменная структура ферромагнитной пластинки:

а - структура без замыкания магнитного потока;

б - структура с замыканием магнитного потока через призматические поверхностные замыкающие домены;- размер пластинки вдоль осей Y и X ;- высота пластинки вдоль оси z;- толщина домена.

В 1945 году Е.М. Лифшиц теоретически показал, что при большой толщине пластин может начаться ветвление доменов у поверхности образца. В каждом домене могут образовываться клиновидные домены с противоположным направлением намагниченности по сравнению с направлением намагниченности в основном домене. Их размер и количество зависят от толщины образца.

Рассмотренная доменная структура относится к классу доменных структур с незамкнутыми силовыми линиями магнитного поля внутри образца (незамкнутым магнитным потоком). Оказывается, что такая структура не всегда является энергетически выгодной. Как показали Ландау и Лифшиц, в случае одноосного ферромагнетика зачастую более выгодными являются доменные структуры с замкнутым магнитным потоком (рис. 1, б). Эта модель отличается от рассмотренной выше наличием треугольных замыкающих призматических областей. В результате магнитный поток оказывается замкнутым внутри кристалла. Магнитные полюсы на поверхности при этом исчезают, и вместе с этим обращается в нуль вклад магнитодипольной энергии. Но в то же время увеличивается энергия анизотропии, так как в замыкающих доменах намагниченность перпендикулярна направлению, в котором минимальна энергия анизотропии. Расчет показывает, что такая доменная структура будет выгодней по сравнению с предыдущей в том случае, если так называемый фактор качества образца

Перейти на страницу: 1 2

Еще статьи

Микроконтроллерная система управления трехобмоточным бесколлекторным двигателем постоянного тока
В настоящее время в системах управления и обработки данных все чаще применяются микроконтроллеры, решающие широкий спектр задач. Однокристальные микроконтроллеры (ОМК) являются наиболее массовым видом устройств современной микропроцессорной техники, годовой объем выпуска которых составляет более 2,5 млр ...

Все права защищены! 2019 - www.techshape.ru