TechShape.ru

Информационные технологии

Основные разделы

Цилиндрические магнитные домены (ЦМД)

Проведенный анализ базировался на предположении о плоскопараллельной форме доменов. Такие структуры наблюдаются в тонких пленках и пластинках. Однако в реальных ферромагнитных образцах нередки и другие виды доменных структур. В одноосных кристаллах часто наблюдаются так называемые лабиринтные доменные структуры. Их возникновение объясняется тем, что направление доменных границ в плоскости пластины ничем не фиксировано (в плоскости пластины нет анизотропии). Изгиб доменных границ может быть обусловлен малыми неоднородностями пленки, случайностью в момент зарождения доменной структуры или эффектами тепловой хаотизации. Такая структура остается выгодной и при помещении в малое внешнее магнитное поле, перпендикулярное поверхности пленки.

При увеличении магнитного поля в такой ситуации возникает очень интересное явление. Очевидно, что при увеличении поля растут домены, в которых вектор параллелен вектору индукции магнитного поля и, наоборот, уменьшается размер доменов, в которых антипараллелен . Размер последних доменов при некотором значении B может стать порядка характерного размера l0. При этом данный полосовой домен распадается на отдельные цилиндрические домены кругового сечения (рис. 2). Благодаря магнитодипольному взаимодействию они отходят друг от друга и равномерно распределяются по всей поверхности пластины, образуя, как правило, правильную гексагональную решетку. Плотность доменов зависит от величины индукции B. Интересно отметить, что при уменьшении B решетка цилиндрических магнитных доменов (ЦМД) может сохраняться и в слабых полях, даже при B = 0.

Рис. 2. Цилиндрические магнитные домены

ЦМД обладают интересными, присущими только им свойствами. Если в пластинке с полосовой доменной структурой внутреннее магнитное поле должно быть равно нулю, то в образцах с ЦМД из-за наличия кривизны доменных границ это поле должно быть отлично от нуля. Иначе ЦМД не будут устойчивыми. Ситуация здесь аналогична поведению пузырька газа в жидкости. Для существования пузырька в жидкости необходимо, чтобы давление внутри пузырька отличалось от давления в жидкости. Также и в случае ЦМД: для их устойчивого существования необходимо наличие внутреннего магнитного поля, которое будет создавать дополнительное давление на искривленную доменную границу. Приведенная аналогия как раз объясняет английское название ЦМД - magnetic bubble (магнитный пузырек).

Очень интересно ведет себя ЦМД во внешнем магнитном поле (рис. 3). Предположим, что сначала в пластинке при B = 0 существует полосовой или лабиринтный домен или доменная структура. При увеличении магнитного поля до некоторого значения B1, которое называется полем эллиптической неустойчивости ЦМД, лабиринтная структура только несколько деформируется. При B > B1 происходит зарождение устойчивых ЦМД. Если же B = B1, то круговая форма ЦМД становится неустойчивой относительно растяжения в некотором направлении. Отсюда и происходит переход в лабиринтную структуру. В интервале полей B1< B < B2 энергия ЦМД меньше энергии лабиринтной доменной структуры и однородного состояния, то есть в этом интервале существуют стабильные ЦМД. При B = B2 энергии ЦМД и однородного состояния сравниваются, однако тем не менее в пластине могут существовать метастабильные ЦМД, так как на кривой зависимости энергии ЦМД от его радиуса имеется локальный минимум при некотором значении диаметра ЦМД d0. Данное значение d0, конечно же, зависит от величины магнитного поля. При увеличении B > B2 величина d0 уменьшается. После достижения d0 значения, называемого критическим (dcr), ЦМД скачком исчезает - коллапсирует. Значение магнитного поля, при котором происходит коллапс ЦМД, называется полем коллапса (Bkol). При B > Bkol выгодно однородное намагничивание пластинки, то есть ЦМД в этих полях отсутствуют.

Рис. 3. Зависимость энергии W ЦМД от его диаметра при различных значениях индукции магнитного поля B : (1) B1< B < B2; (2) B = B2 ; (3) B2 < B < Bkol ; (4) B = Bkol ; (5) B > Bkol.

0 - равновесный диаметр ЦМД, отвечающий минимуму энергии,cr - критическое значение диаметра ЦМД

Рассмотрим более подробно изолированный ЦМД. Форма ЦМД сохраняется благодаря равновесию двух факторов: тенденции к уменьшению радиуса домена, ведущей к понижению энергии доменной стенки из-за уменьшения площади поверхности стенки, и тенденции к увеличению радиуса, ведущей к понижению энергии магнитодипольного взаимодействия. Увеличение радиуса ЦМД вызывает понижение магнитодипольной энергии из-за того, что размагничивающее поле внутри ЦМД ориентировано в направлении вектора намагниченности вне домена. Образующиеся на поверхности торцов ЦМД магнитные полюсы противоположны по знаку полюсам на поверхности области, граничащей с ЦМД. В результате уменьшаются суммарное размагничивающее магнитное поле и энергия магнитодипольного взаимодействия. Расчет показывает, что суммарное размагничивающее поле направлено против намагниченности вне домена и пропорционально (1-2N)M, где N=N(r) - так называемый размагничивающий фактор ЦМД, зависящий от его радиуса r. Кроме того, если поверхностная энергия доменной стенки равна , то магнитное поле, обусловленное давлением внутри ЦМД радиусом r, будет пропорционально (по аналогии с давлением внутри пузырька в жидкости, известным из школьного курса физики) . Знак минус означает, что этот эффект приводит к сжатию домена. Для того чтобы ЦМД находился в состоянии статического равновесия, необходимо, чтобы сумма указанных полей уравновешивалась внешним магнитным полем. Анализ полученного условия равновесия показывает, что существует такое значение радиуса ЦМД, которое как раз и соответствует устойчивому состоянию с ЦМД. В малых полях ЦМД становится неустойчивым относительно перехода в полосовой домен, а в больших полях радиус домена уменьшается и ЦМД исчезает (коллапсирует) - происходит переход к однородному состоянию без доменов.

Еще статьи

Информационные технологии и электроника
Понятие информации появилось очень давно, однако сама информация как явление неизмеримо старше. Информация представляет собой один из важнейших ресурсов и, в то же время, одну из движущих сил развития человеческого общества. Современный мир характеризуется такой тенденцией, как постоянное повышение роли ...

Все права защищены! 2018 - www.techshape.ru