TechShape.ru

Информационные технологии

Основные разделы

Методы увеличения пропускной способности оптических волокон

На данный момент протяженность проложенных во всем мире стандартных одномодовых волокон весьма велика, поэтому перед многими владельцами систем на их основе встает вопрос о том, как можно модернизировать систему, чтобы ее пропускная способность соответствовала современным требованиям. Один из путей привлечение оптических технологий и построение магистралей на основе технологии полностью оптических сетей (PON), что делает возможным значительно повысить экономичность, гибкость и надежность сетей и, самое главное, значительно увеличить пропускную способность, не переоборудуя существующие кабельные системы.

Повысить пропускную способность волоконно-оптической линии связи можно с помощью увеличения битовой скорости или путем добавления каналов с несколькими длинами волн, т.е. построения систем, обеспечивающих спектральное мультиплексирование WDM (Wave Division Multiplexing) или, иначе, мультиплексирование по длине волны. Ввод в действие систем WDM продиктован экономическими соображениями, поскольку гораздо дешевле заменить терминальное оборудование, чем прокладывать новые кабели и устанавливать дополнительные регенераторы.

Суть WDM заключается в том, что независимые оптические информационные потоки объединяются и передаются по одному волокну на разных длинах волн (рисунок 13). Это значит, что операторы связи могут увеличить пропускную способность своих волокон без серьезных капиталовложений, связанных со строительством или арендой новых волокон. Передавая сигналы на n длинах волн (т.е. по n каналам), можно увеличить пропускную способность сети в n раз.

Рисунок 13 - Принцип WDM

Оценим пропускную способность оптического диапазона 1280-1620 нм. Полоса частот во 2, 3, 4-м окнах прозрачности ΔF=49,2 ТГц. При межканальном интервале 100 ГГц можно организовать 492 канала. Если использовать аппаратуру со скоростью передачи 2,5 Гбит/с в каждом канале, то суммарная пропускная способность составит В=1230 Гбит/с, а при использовании скорости 10 Гбит/с получим почти 5 Тбит/с.

Для строительства волоконно-оптических систем следующего поколения, использующих технологию WDM, как нельзя лучше подходят новые оптические волокна с малой дисперсией, предоставляя массу возможностей по дальнейшей модернизации и эффективному использованию полосы пропускания. Например, часть каналов можно задействовать под передачу аналогового видео, часть - под передачу данных, а часть - для речи. Распределение различных сервисов по волновым диапазонам, несомненно, имеет свои преимущества, и все больше операторов начинают осознавать это.

Практически ни у кого сегодня не возникает сомнений, что будущее - за системами WDM.

При анализе технологии WDM следует учитывать следующие явления: нелинейное преломление, вынужденное рассеяние света и четырехволновое смешение.

Нелинейное преломление вызвано зависимостью показателя преломления сердцевины волокна, а значит, и фазы выходного сигнала от интенсивности оптического сигнала. Когда мощность сигнала достаточно велика, ее колебания приводят к фазовой самомодуляции (ФСМ) и фазовой кросс-модуляции (ФКМ). В первом случае сигнал воздействует сам на себя, во втором - на сигнал в другом канале. Каждый из этих эффектов может создавать помехи, когда передача ведется с помощью фазовой манипуляции. Максимально допустимое значение канальной мощности, обусловленное ФСМ и ФКМ, обратно пропорционально числу мультиплексируемых каналов.

Вынужденное рассеяние света представляет собой рассеяние на элементарных возбуждениях среды, индуцированных рассеиваемой волной. Поскольку процесс рассеяния стимулируется самим рассеиваемым светом, рассеянное излучение характеризуется высокой степенью когерентности, узкими диаграммами направленности отдельных компонентов и интенсивностью, сопоставимой с интенсивностью падающего света. Таким образом, при возбуждении среды мощным световым источником происходит модуляция ее параметров, что приводит к амплитудной модуляции рассеянного света, а следовательно, к появлению в нем новых спектральных компонентов.

Самые важные виды рассматриваемого явления - вынужденное комбинационное рассеяние (ВКР), иногда называемое рамановским, и вынужденное рассеяние Мандельштама-Бриллюэна (ВРМБ). Комбинационное рассеяние связано с возбуждением новых колебательных и, в меньшей степени, вращательных энергетических уровней частиц среды, а ВРМБ - с появлением в среде гиперзвуковых волн.

В отличие от ВКР, излучение, рассеянное по механизму Мандельштама-Бриллюэна, распространяется только в направлении, противоположном направлению падающего. Его интенсивность значительно выше, чем при ВКР; ВРМБ порождает перекрестные помехи, если разность несущих частот составляет 11 ГГц, а передача ведется в противоположных направлениях. Другое отличие от ВКР состоит в том, что максимально допустимая мощность канала не зависит от числа мультиплексируемых каналов и расстояния между ними. Ее типичное значение для высокоскоростных линий дальней связи равно 10 мВт. ВРМБ является единственным из описываемых нелинейных явлений, влияние которого зависит от скорости передачи. С ростом последней оно уменьшается, причем особенно быстро - при использовании фазовой манипуляции. Им можно пренебречь для импульсов короче 10 нс.

Перейти на страницу: 1 2

Еще статьи

Микроконтроллерная система управления трехобмоточным бесколлекторным двигателем постоянного тока
В настоящее время в системах управления и обработки данных все чаще применяются микроконтроллеры, решающие широкий спектр задач. Однокристальные микроконтроллеры (ОМК) являются наиболее массовым видом устройств современной микропроцессорной техники, годовой объем выпуска которых составляет более 2,5 млр ...

Все права защищены! 2021 - www.techshape.ru